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All questions are selected from the textbook. Please submit online through Blackboard
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Compulsory Part

Chapter 1 (page 41): 1, 2, 3, 5, 10, 19, 20(a)

Optional Part

Chapter 1 (Page 41): 6, 7, 8, 9, 11, 12
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Compulsory Part:

1. Solution.

(a) P (X1 = 0 | X0 = 0 and X2 = 0)

=
P (X0 = 0, X1 = 0, X2 = 0)

P (X0 = 0, X2 = 0)

=
P (X0 = 0, X1 = 0, X2 = 0)

P (X0 = 0, X1 = 0, X2 = 0) + P (X0 = 0, X1 = 1, X2 = 0)

=
π0(0)(1− p)2

π0(0)(1− p)2 + π0(0)pq

=
(1− p)2

(1− p)2 + pq
.

(b) P (X1 6= X2)

= P (X0 = 0, X1 6= X2) + P (X0 = 1, X1 6= X2)

= P (X0 = 0, X1 = 0, X2 = 1) + P (X0 = 0, X1 = 1, X2 = 0)+

P (X0 = 1, X1 = 0, X2 = 1) + P (X0 = 1, X1 = 1, X2 = 0)

= π0(0)(1− p)p+ π0(0)pq + (1− π0(0))qp+ (1− π0(0))(1− q)q
= pq + π0(0)(1− p)p+ (1− π0(0))(1− q)q.

2. Solution. Note that the state space is {0, 1, · · · , d}. Recall that we want to find

P (x, y) = P (Xn+1 = y | Xn = x).

If x = 0, then y = 1. In this case, it is easy to see that P (x, y) =

{
1, if y = 1;

0, if y 6= 1.

If x = d, then y = d− 1. We can also see that P (x, y) =

{
1, if y = d− 1;

0, if y 6= d− 1.

If x ∈ {1, · · · , d − 1}, then exhausting four cases (i.e. black (or red) ball is chosen

from box 1 and black (or red) ball is chosen from box 2), we can find that

P (x, y) =



(
x
d

)2
, if y = x− 1;

2
(
x
d

) (
d−x
d

)
, if y = x;(

d−x
d

)2
, if y = x+ 1;

0, otherwise.
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3. Solution. If Xn = 0, it is clear that P (0, y) = f(y).

If Xn 6= 0, then

Xn+1 =

{
Xn + ξn+1 − 1, with probability p;

Xn + ξn+1, with probability 1− p.

This means

P (x, y) = P (Xn+1 = y | Xn = x)

= p · P (ξn+1 = y − x+ 1) + (1− p) · P (ξn+1 = y − x)

= pf(y − x+ 1) + (1− p)f(y − x).

Hence the transition function is

P (x, y) =

{
f(y), x = 0;

pf(y − x+ 1) + (1− p)f(y − x), x 6= 0.

5. Solution.

(a) For n = 1, P0(T0 = 1) = P (0, 0) = 1− p.
For n ≥ 2, P (T0 = n) = P (0, 1)P (1, 1)n−2P (1, 0) = pq(1− q)n−2.

(b) P0(T1 = n) = P (0, 0)n−1P (0, 1) = p(1− p)n−1.

10. Solution. The transition matrix is

P =


0 1 0 0

1/3 0 2/3 0

0 2/3 0 1/3

0 0 1 0


(a) For x = 0, P0(T0 = 1) = P0(T0 = 3) = 0, P0(T0 = 2) = P (0, 1)P (1, 0) = 1/3.

For x = 1, P1(T0 = 1) = P (1, 0) = 1/3, P1(T0 = 2) = 0,

P1(T0 = 3) = P (1, 2)P (2, 1)P (1, 0) = 4/27.

For x = 2, P2(T0 = 1) = P2(T0 = 3) = 0, P2(T0 = 2) = P (2, 1)P (1, 0) = 2/9.

For x = 3, P3(T0 = 1) = P3(T0 = 2) = 0, P3(T0 = 3) = P (3, 2)P (2, 1)P (1, 0) = 2/9.

(b)

P 2 =


1/3 0 2/3 0

0 7/9 0 2/9

2/9 0 7/9 0

0 2/3 0 1/3

 , P 3 =


0 7/9 0 2/9

7/27 0 20/27 0

0 20/27 0 7/27

2/9 0 7/9 0


(c) π1 = π0P = (1/12, 5/12, 5/12, 1/12), π2 = π0P

2 = (5/36, 13/36, 13/36, 5/36),

π3 = π0P
3 = (13/108, 41/108, 41/108, 13/108).

19. Solution. (a) Note that C1 = {1, 2, 3} and C2 = {4, 5, 6} are two irreducible

closed sets. Hence 0 is transient and 1, 2, 3, 4, 5, 6 are recurrent.

(b) Clearly ρ00 = P (0, 0) = 1/2. We need to calculate two absorption probabilities

ρC1(0) and ρC2(0). By one-step argument, we have ρC1(0) = (1/2)ρC1(0) + 3/8 and
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ρC2(0) = (1/2)ρC2(0) + 1/8. Hence ρ01 = ρ02 = ρ03 = ρC1(0) = 3/4 and ρ04 = ρ05 =

ρ06 = ρC2(0) = 1/4.

20. Solution. (a) There are two irreducible closed sets C1 = {0, 1} and C2 = {2, 4}.
Hence 3, 5 are transient and 0, 1, 2, 4 are recurrent.

Optional Part:

6. Solution. In the Ehrenfest chain, the state space is {0, 1, · · · , d} and the tran-

sition function is

P (x, y) =

{
x
d
, y = x− 1;

d−x
d
, y = x+ 1.

Hence

P (X1 = 0) = P (X0 = 1)P (1, 0) =
d

2d
· 1

d
=

1

2d
,

P (X1 = d) = P (X0 = d− 1)P (d− 1, d) =
d

2d
· 1

d
=

1

2d
,

and for x ∈ {1, · · · , d− 1},

P (X1 = x) = P (X0 = x− 1)P (x− 1, x) + P (X0 = x+ 1)P (x+ 1, x)

=

(
d

x−1

)
2d
· d− x+ 1

d
+

(
d

x+1

)
2d
· x+ 1

d

=
d!

(d− x)!(x− 1)!
· 1

d · 2d
+

d!

(d− x− 1)!x!
· 1

d · 2d

=
x
(
d
x

)
+ (d− x)

(
d
x

)
d · 2d

=

(
d
x

)
2d
.

Hence the distribution of X1 is still the binomial distribution B(d, 1/2).

7. Proof. From a direct derivation,

P (X0 = x0|X1 = x1, · · · , Xn = xn) =
P (X0 = x0, X1 = x1, · · · , Xn = xn)

P (X1 = x1, · · · , Xn = xn)

=
P (X0 = x0)P (x0, x1) · · ·P (xn−1, xn)

P (X1 = x1)P (x1, x2) · · ·P (xn−1, xn)

=
P (X0 = x0)P (x0, x1)

P (X1 = x1)

=
P (X0 = x0, X1 = x1)

P (X1 = x1)

= P (X0 = x0|X1 = x1).
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8. Proof. (a) Let x0 = x and xn0 = y. Suppose that there exists 0 ≤ i < j ≤ n0

such that xi = xj. Then

P n0+i−j(x, y) > P (x, x1) · · ·P (xi−1, xi)P (xj, xj+1) · · ·P (xn0−1, y) > 0.

It is impossible since n0 is the smallest positive integer such that P n0(x, y) > 0. Hence

x, x1, . . . , xn0−1, y are distinct.

(b) By (a), we have n0 + 1 distinct states x, x1, . . . , xn0−1, y. Hence n0 + 1 ≤ d, or

equivalently, n0 ≤ d− 1.

(c) By (a) and (b),

Px(Ty ≤ d− 1) ≥ Px(Ty = n0)

≥ P (x, x1)P (x1, x2) · · ·P (xn0−2, xn0−1)P (xn0−1, y) > 0.

9. Proof. (a) By formula (29) in textbook,

Px(Ty ≤ n+ 1) =
n∑

k=0

Px(Ty = k + 1)

= Px(Ty = 1) +
n∑

k=1

Px(Ty = k + 1)

= P (x, y) +
n∑

k=1

(∑
z 6=y

P (x, z)Pz(Ty = k)

)

= P (x, y) +
∑
z 6=y

P (x, z)
n∑

k=1

Pz(Ty = k)

= P (x, y) +
∑
z 6=y

P (x, z)Pz(Ty ≤ n), n ≥ 0.

(b) As in the definition ρxy = Px(Ty <∞), we have

ρxy = lim
n→∞

Px(Ty ≤ n+ 1)

= lim
n→∞

(
P (x, y) +

∑
z 6=y

P (x, z)Pz(Ty ≤ n)

)

= P (x, y) +
∑
z 6=y

P (x, z)
(

lim
n→∞

Pz(Ty ≤ n)
)

= P (x, y) +
∑
z 6=y

P (x, z)Pz(Ty <∞)

= P (x, y) +
∑
z 6=y

P (x, z)ρzy.
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11. Solution. (a)

P =


1 0 0 0

1/5 3/5 1/5 0

0 1/5 3/5 1/5

0 0 0 1

 , P 2 =


1 0 0 0

8/25 2/5 6/25 1/25

1/25 6/25 2/5 8/25

0 0 0 1


(b) π1 = π0P = (1/10, 2/5, 2/5, 1/10), π2 = π0P

2 = (9/50, 8/25, 8/25, 9/50).

(c) For x = 0 or x = 3, Px(T{0,3} = 1) = 1, Px(T{0,3} = 2) = 0.

For x = 1 or x = 2, Px(T{0,3} = 1) = 1/5, Px(T{0,3} = 2) = (3/5)(1/5)+(1/5)(1/5) =

4/25.

12. Solution. (a)

P 2 =

1− p 0 p

0 1 0

1− p 0 p


(b) Clearly we have P 4 = P 2P 2 = P 2.

(c) For n = 2k, k ∈ N+, P n = (P 2)k = P 2.

For n = 2k + 1, k ∈ N+, P n = (P 2)kP = P 2P = P .


